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A B S T R A C T

Rapid advancement in computer vision technologies provides increasing opportunities for the quantitative
characterization of animal behavior, although reduction of their analysis to several scalar metrics appears
a common limitation for the representation of complex behavioral patterns. Here we suggest an alternative
approach to the quantitative assessment of animal behavioral patterns by parameterization of a generalized
scalable model based on fractional Brownian motion using detrended fluctuation analysis of the observational
movement trajectories and validate it using novel tank test data. In a zebrafish model representative
movement patterns are characterized by two asymptotic regimes, with persistent increments at small scales
and antipersistent increments at large scales. A single crossover between these asymptotic regimes that appears
a single free parameter of the animal movement model acts as a complementary behavioral indicator leading
to a more explicit characterization of both stimulative and sedative effects. We show explicitly that the model
can be also used for a robust estimation of interpretable scalar metrics commonly used in behavioral analysis
leading to the emphasized differences between experimental groups. We believe that this approach, due to
its universality, robustness and clear physical interpretation, is a perspective tool for the analysis of animal
behavior complexity under various experimental and natural conditions.
1. Introduction

Analysis and interpretation of animal movement patterns in vari-
ous experimental and natural environments is an important challenge
in biomedical and other natural sciences, ranging from fundamental
animal biology and ecological monitoring to applied biomedical and
pharmacological studies, respectively [1,2], see also [3–6]. Recent
advancements in computer vision technologies lead to increasing avail-
ability of video analysis based information including animal movement
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patterns in various biomedical research and ecological monitoring ap-
plications. In turn, better understanding of these movement patterns
requires simple, interpretable, and scalable approaches to their quan-
titative characterization, leading to the development of fast, accurate,
and cost-effective algorithms based on computer vision.

Experimental drug screening is a prominent application where anal-
ysis and interpretation of model organism movement patterns are
widely used to overcome certain inevitable limitations of target-based
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in vitro assays that are particularly relevant for psychoactive drugs caus-
ing behavioral changes in animals that in turn reflect the complexity
of their vertebrate nervous system response to the pharmacological
stimuli [7].

For many years, the open field test remains the most widely used
test for the quantitative characterization of behavioral patterns in ex-
perimental animal rodent models [8–12]. Over more than half a decade
the open field test paradigm has developed into a powerful tool for
the evaluation of animal locomotion and exploratory activity, as well
as risk assessment and anxiety behavior, with a number of established
quantitative markers for each of the behavioral characteristic studied.

Despite an impressive list of experimental models and behavior
tests for rodents, zebrafish Danio rerio has an increasing popularity in
neuropharmacological studies. Zebrafish as a model organism is highly
sensitive to pharmacological manipulations that, due to substantial
genetic, physiological and pharmacological homology with mammals
[13], low cost, and reproducibility, represent an increasingly common
model for high-throughput drug screening [14]. Despite the seem-
ingly relative simplicity of the central nervous system, Danio rerio
demonstrate an extensive behavior repertoire [15].

In recent years a significant success has been achieved in the under-
standing of drug-sensitive phenotypes of anxiety, such as geotaxis and
scototaxis, which were pharmacologically and behaviorally validated
[16–18]. To assess the anxiety-related behavior in zebrafish, several
behavior paradigms such as the novel tank test, light-dark box, shoaling
and several others have been proposed. The novel tank test is the most
commonly used behavioral paradigm in adult zebrafish, conceptually
similar to the rodent open field test and exploiting the natural behavior
of zebrafish to seek protection in an unfamiliar environment by diving
to the bottom and remaining there until they feel safe enough to explore
[16], see also [19–24].

Interpretation of the results obtained in the novel tank test is com-
monly based on the quantitative assessment of a series of movement
pattern characteristics, for example, the time spent in the bottom zone
of the tank, as well as the number and total time of freezing bouts.
Manual registration of behavior is often time-consuming and depends of
the investigator’s subjective point of view potentially reducing the va-
lidity of the results. Moreover, several parameters can hardly be scored
manually (e.g. traveled distance or mean and maximum velocity).
To partially overcome the above limitations, computer vision-based
solutions are essential for the automated and unbiased analysis of large
amounts of video data samples, and video-tracking systems are widely
applied to zebrafish behavior research [25–27].

Among available solutions, Ethovision XT is the leading commercial
software widely used for video tracking of zebrafish behavior, which
can be successfully applied for social interaction tracking, anxiety-like
behavior, exploration, swimming patterns, or just general activity in
both adults and larvae [28–31]. Despite the fact that Ethovision XT
has wide functionality and is applicable not only for zebrafish, but
for almost any model organism, this software is not amenable to
custom-made modifications.

In the common behavioral test analysis procedure, once the animal
movement trajectories have been extracted, their further analysis is
commonly reduced to a number of predefined characteristics, in most
cases represented by a set of scalar metrics. For example, in the open
field rodent test locomotion characteristics include the total distance
traveled and the total zone entries, vertical activity is characterized
by the rear frequency, rear duration and grooming, while the risk
assessment is justified from the total stretch attend posture and the total
sniffing events count, and the decision making patterns are typically
interpreted based on the properties of the periphery zone return and
corner zone return events. Altogether, the total anxiety level is justified
from the decreased total locomotor activity, lower distance traveled in
central zone, lower of time spent in central zone, higher fraction of
time spent in the periphery zone, as well as in the corners [32,33]. Very
2

similar characteristics are evaluated in the novel tank test, including the
total distance, the average and the maximum velocity, fading frequency
and cumulative duration, as well as durations and transitions between
the top, central and bottom zones, respectively (see, e.g., [34–36] and
references therein).

Although the above characteristics typically have a clear underlying
physical interpretation, being analyzed as single variables, they are
often insufficient to characterize the whole complexity of the ani-
mal movement patterns. In turn, more sophisticated multiparametric
models are required to extract further significant information partially
hidden in the interactions between these characteristics. One common
way to combine multiple scalar parameters is based on multiple regres-
sion analysis such as binary logistic regression or maximum covariance
analysis when it comes to distinguishing between two different move-
ment scenarios (such as test vs. control comparison). Although these
methods are rather simple, their disadvantages include specific model
parameters for each particular binary discrimination scenario that are
obtained during an inevitable learning procedure, as well as limited
interpretability of the combined parameter used in the discrimination
problem.

As a possible alternative, a model-based paradigm of animal move-
ment pattern representation is often considered. Several models of
animal movement trajectories can be found in the recent literature with
application to various experimental and natural environments [37–40].
In particular, models based on the (fractional) Brownian motion (fBm)
and its modifications has attracted attention in recent years [3–6].
One of the keynote features of fBm models is long-term persistence
implying asymptotically unlimited correlation times that have been
identified in multiple processes characterizing various natural complex
systems in the last decades. The fBm based mathematical models are
also scalable that makes them attractive for modeling time series with
finite and often variable observation times. Finally, in marked contrast
to models artificially combined from multiple scalar movement metrics,
fBm based models have only few free parameters that are easily phys-
ically interpretable (for further details, we refer to [1] and references
therein).

As we show below, in the context of this model, typical movement
patterns during neuropharmacological experiments exhibit different
crossover positions between persistent and antipersistent regimes de-
pending on the applied pharmacological stimuli. Moreover, we also
show how the model parameters can be associated with the conven-
tional metrics such as the level crossing statistics characterizing zone
transitions events, thus making the corresponding results reproducible
from the model based perspective and interpretable in the context
of commonly used animal movement metrics. We believe that the
proposed approach, although validated here just for the novel tank test
study, could be also applicable to other similar tests such as the rodent
open field test.

2. Methods

2.1. Experimental protocol

Wild-type short-fin adult zebrafish (Danio rerio) (n = 96, 50:50
male:female ratio, 4–6 months old) were obtained from a local com-
mercial supplier (Aksolotl Ltd., St. Petersburg, Russia) and housed in
groups (15–20 fish per tank) in 40-L glass tanks filled with filtered
facility water for at least 20 days prior to the novel tank testing (room
and water temperature was maintained at 25–27 ◦C, and water pH at
7.0–7.5) [18]. Fluorescent ceiling-mounted light tubes provided room
illumination on a 14/10 light/dark photoperiod cycle (lights on at
7:00 am and off at 9:00 pm). The animals were fed three times daily
with commercial flake food Tetramin-Pro (Terta GMBH, Osnabrück,
Germany). Animal experiments were approved by the Institutional Ani-
mal Care and Use Committee Reference: F-MORFO-SA-21, 20.01.2021,
and fully adhered to the National and Institutional guidelines and

regulations on animal experimentation in adherence to the principles
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Table 1
Characterization of experimental groups, effectors, doses and notations.

Group notation Animal count Dose Boxplot notation

9j control n = 16 0 mg 0
9j 1 mg n = 16 1 mg +
9j 100 mg n = 16 100 mg ++
Caffeine control n = 16 0 mg 0
Caffeine 50 mg n = 16 50 mg +
Caffeine 100 mg n = 16 100 mg ++

of the Declaration of Helsinki. All animals tested were included in final
analyses, while for some indices individual values have been excluded
when considering certain quantities sensitive to the presence of outliers
(see below).

In the following, all animals were divided in six groups, with n=16
animals in each group, as outlined in Table 1.

Two groups of animals were treated with an investigational allyl-
morpholine derivative 9j ((E)-4-[1-(8-bromo-6-methyl-4-oxo-4H-
chromen-3-yl)-4-methylpent-1-en-3-yl]morpholin-4-ium chloride) (1)
that has been identified as a potent acetycholinesterase and butyryl-
cholinesterase inhibitor, as well as an N-methyl-D-aspartate gluta-
matergic receptor antagonist in vitro [41] at the concentrations of
1 mg L−1 and 100 mg L−1, respectively, while the third group used as a
elevant control. Of note, in a recent screening experiment in zebrafish,
j was found to produce a dose-dependent sedative effect within a
…100 mg L−1 concentration range in the Novel tank test [42].

From three remaining animal groups, two groups were treated
ith caffeine (1,3,7-trimethylpurine-2,6-dione) (2), a methylxanthine
lkaloid, is known for its psychostimulant-like action, possibly due
o the central A1 adenosine receptor antagonism. Acute exposure to
00 mg L−1 caffeine was shown previously to increase alertness and
nduce anxiety-like behavior in zebrafish in the novel tank test [43].
he remaining group served as a relevant control. Of note, to eliminate
ossible discrepancies due to the time lag between series of experiments
ith 9j and caffeine, two independent control groups have been used.

Behavioral testing was performed between 12.00 and 14.00 h. The
ovel tank apparatus was represented by a plexiglass container (20 ×
0 × 5 cm, which restricted movement along the third dimension, thus
nforcing ‘‘two-dimensional’’ zebrafish movement patterns), virtually
ivided by a marker line into the upper and lower halves [Egan, 2009].
he trials were recorded with a CNE-CWC web camera (CANYON Co.,
orinchem, The Netherlands) for further analyses. Further processing
as performed offline to calculate the total distance (cm), average and
aximum speed (cm/s), the stop duration (s) (velocity < 2 cm∕s),

ime spent in the top zone (s), crosses count and the first ascent
atency (s). For that, we applied an in-house developed algorithm and
oftware written in Python using computer vision methods, indicated
s module A in Fig. 1. For the initial validation of the developed
lgorithm and software tool, for the 9j test groups and the respective
ontrol group, we also applied Ethovision XT 11.5 software (Noldus IT,
ageningen, The Netherlands) as a reference.

.2. The overall study design

The overall study design is summarized in Fig. 1 where the first
ipeline (indicated by blue arrows) reproduces the conventional ap-
roach to the analysis of animal movement trajectories based on the
stimation of seven scalar metrics similar to those implemented in the
thovision XT software tool.

The second pipeline (indicated by violet arrows) represents an
lternative model-based solution proposed here that focuses on the
luctuation analysis of animal movement trajectories and the estimation
f the model parameters based on their fluctuation functions. In this
cenario, the free model parameters are directly used in the decision
aking procedure to distinguish between characteristics movement
atterns observed in the studied control and test groups, respectively.
3

Fig. 1. The overall study design, including (A) computer vision based trajectory
extraction, (B) a simulation algorithm that generates surrogate trajectories reminiscent
to the observational ones, (C) conventional analysis based on the estimation of multiple
scalar metrics, (D) an alternative approach based on the animal movement pattern
model indentification by fluctuation analysis that we propose here, and (E) the final
statistical analysis of the study results. Blue, violet and green arrows represent different
analysis pipelines that we have tested in our study.

The third pipeline (indicated by green arrows) focuses on the repro-
ducibility of the conventional metrics (originally obtained from the first
pipeline) from the surrogate trajectories that are artificially simulated
with the model parameters that best reproduce the statistical properties
of the observational trajectories in terms of their fluctuation functions.

Finally, statistical analysis is considered both for the results of each
single pipeline and for the combination of the results obtained using dif-
ferent methods, and thus represented by outcomes of different pipelines
in order to combine potentially complementary features extracted by
different approaches.

The modules and pipelines implemented in Python, as well as source
data used for their validation, are provided in the Supplementary
material.

2.3. Extraction of movement trajectories by computer vision method (mod-
ule A)

In our in-house developed computer vision based algorithm, each
individual frame extracted from the video sequence is subjected to the
procedure as follows.

1. First, the color images are converted to grayscale as

𝐺𝑆𝑖𝑗 = 0.299𝑅𝑖𝑗 + 0.587𝐺𝑖𝑗 + 0.114𝐵𝑖𝑗 , (1)

where 𝐺𝑆𝑖𝑗 is the grayscale pixel intensity, 𝑅𝑖𝑗 , 𝐺𝑖𝑗 , 𝐵𝑖𝑗 are the
red, green, and blue channel intensities, respectively.

2. Next, the images are smoothed with Gaussian blur

𝐺(𝑥, 𝑦) = 1
2𝜋𝜎2

𝑒−
𝑥2+𝑦2

2𝜎2 , (2)

where 𝑥, 𝑦 are the coordinates of the point, and 𝜎 is the standard
deviation.

3. Finally, the image is binarized using the automatic Otsu thresh-
olding algorithm.
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Fig. 2. Original frame from the video (upper left), frame after the Otsu thresholding algorithm (upper right), frame after background subtraction (lower left), visualization of the
result (lower right).
In the following, we analyze the preprocessed frame sequence with
algorithm 1. This algorithm is commonly used for different tasks of
moving detection with a static background. The illustration of the
algorithm is provided in Fig. 2.

Algorithm 1 Video processing
1: 𝑉 𝑖𝑑𝑒𝑜 = array[n, w, h, 1]
2: 𝐵𝐺 = 𝑉 𝑖𝑑𝑒𝑜[0]
3: for 𝑖 in (1, ..., 𝑙𝑒𝑛(𝑉 𝑖𝑑𝑒𝑜)) do
4: 𝑓𝑟𝑎𝑚𝑒 = 𝑉 𝑖𝑑𝑒𝑜[𝑖]
5: 𝑓 = 𝑓𝑟𝑎𝑚𝑒 − 𝐵𝐺
6: 𝑐𝑛𝑡𝑟𝑠, 𝑎𝑟𝑒𝑎𝑠 ← find contours and its areas in 𝑓
7: reject 𝑐𝑛𝑡𝑟𝑠 with 𝑎𝑟𝑒𝑎𝑠 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢𝑝𝑝𝑒𝑟 or 𝑎𝑟𝑒𝑎𝑠 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑜𝑤𝑒𝑟
8: 𝑐𝑛𝑡𝑟𝑡 ← select contour from 𝑐𝑛𝑡𝑟𝑠 with largest area
9: 𝑀00,𝑀01,𝑀10,𝑀11 ← calculate Image moment for 𝑐𝑛𝑡𝑟𝑡

10: 𝑥𝑖 =
𝑀10
𝑀00

11: 𝑦𝑖 =
𝑀01
𝑀00

12: end for

The algorithm implemented in Python is provided together with the
source data used for its validation in the Supplementary material.

2.4. Conventional metrics estimation (module C)

Seven conventional animal movement trajectory metrics have been
estimated using the developed software module, indicated as module C
in Fig. 1. In particular, the considered metrics include (location of
respective metrics in the Ethovision XT 11.5 software is given in
parentheses):

1. Total distance traveled by the fish during the experiment [cm]
(Distance moved →center-point →Total).

2. Average speed defined as the total traveled distance over the du-
ration of the experiment [cm/s] (Velocity →center-point
→Mean).
4

3. Stop duration estimated as the total time the fish was in the
fading state (Movement →Not Moving/center-point).

4. Crosses count indicating the total number of transition events
between the top and the bottom zones during the experiment
(count) (Bottom-top →Top/center-point →Frequency).

5. Maximum speed among local estimates in 5-point window (cor-
responding to 0.2 s duration) [cm/s] (Velocity →center-point
→Maximum).

6. Sum top time estimated as the total time spent in the top zone
of the tank (s) (In top zone →Top/center-point →Cumulative
Duration).

7. First ascent latency indicating the time until the first ascent from
the bottom to the top of the tank (Zone transition →center-
point/Bottom/Top →Latency to First).

2.5. Estimation of model parameters (module D)

According to the module D in Fig. 1, for the identification of the
animal movement trajectory model and the estimation of its parameters
from empirical trajectories, we employed the detrended fluctuation
analysis (DFA) originally introduced by Peng et al. [44] and thoroughly
investigated since, for example, in [45]. In the DFA procedure, the
cumulative sum of the data series is considered, 𝑌 (𝑖) ≡

∑𝑖
𝑘=1 𝑦𝑘, 𝑖 =

1,… , 𝐿, where 𝐿 is the length of the data, which is sometimes also
called ‘‘profile’’ or ‘‘landscape’’. Next, the entire profile is split into
𝐾𝑠 windows of length 𝑠, and in each window the least mean squares
polynomial fit 𝑝𝜈(𝑖) is calculated. Then, the variance

𝐹 2
𝜈 (𝑠) ≡

1
𝑠

𝑠
∑

𝑖=1
[𝑌 ((𝜈 − 1)𝑠 + 𝑖) − 𝑝𝜈 (𝑖)]2 (3)

is determined in each local window 𝜈. DFA with polynomials 𝑝 of order
𝑚 is capable of eliminating background trends of order 𝑚 in the profile,
that corresponds to trends of order 𝑚 − 1 in the raw data series. In
general, the choice of polynomial order 𝑚 used for the local trend fitting
depends on the a priori assumptions regarding the complexity of the
analyzed trajectory, although recent data indicate that for the majority
of observational processes in natural sciences 𝑚 = 2 appears sufficiently
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accurate (see, e.g. [45]). In the last step one averages 𝐹 2
𝜈 (𝑠) over all

windows and takes the square root to obtain the average fluctuation
function 𝐹 (𝑠).

𝐹 (𝑠) ≡
[

1
𝐾𝑠

𝐾𝑠
∑

𝜈=1
𝐹 2
𝜈 (𝑠)

]1∕2
. (4)

It is known that for long-term correlated data the DFA fluctuation
unctions increase by a power law 𝐹 (𝑠) ∝ 𝑠𝐻 , where 𝐻 is the Hurst
xponent, irrespective of the order of the detrending polynomial. In
he simple case of fully random (‘‘white noise’’) data series 𝐻 = 1∕2.
or short-term correlated records, 𝐻 → 1∕2 for 𝑠 above the correlation
ime 𝑠×. Compared to many widespread alternatives, the DFA method
s comparatively robust to finite-size effects, providing accurate 𝐹 (𝑠)
stimates at scales 𝑠 ≈ 8…𝐿∕4.

An additional parameter for simulation is the mean square deviation
, which is estimated on the original trajectories. This parameter is not

elevant for the analysis but requires a correct trajectory reconstruction.

.6. Model-based trajectory generation (module B)

To simulate surrogate animal movement trajectories, we follow a
tandard procedure to generate data series with a given fluctuation
unction that is based on their basic properties [45]. The most common
ay to generate a stationary random series with a given Hurst exponent
< 𝐻 < 1 is by using the Fourier filter with transfer function 𝐾(𝑓 ) ∝
−𝛽∕2, where 𝛽 is the exponent characterizing the decay of the spectral
ensity 𝑃 (𝑓 ) ∝ 𝑓−𝛽 . According to the Wiener–Khinchin theorem, 𝛽 can
e obtained as 𝛽 = 1 − 𝛾, where 𝛾 is the exponent characterizing the
ecay of the autocorrelation function (ACF) 𝐶(𝑠) ∝ 𝑠−𝛾 , that is in one-
y-one correspondence with the Hurst exponent 𝛾 = 2 − 2𝐻 . In the
ontext of movement trajectories simulation, the above procedure could
e used to generate movement increments.

Finally, the non-stationary trajectory itself can be obtained by fur-
her integration of the increments. It is well known that integration of
he data series leads to the increment of the Hurst exponent 𝐻 , while
alculation of its moving average results in its integration over a limited
cale span, leading to a characteristic crossover in the fluctuation
unction.

.7. Statistical analysis (module E)

For the outliers removal, we employed the Tukey fence method
ased on the analysis of the interquartile range which is known for
ts resistance to the presence of extreme values and applicability to
oth normal and slightly skewed distributions. Next, to determine
elative effects, we have re-normalized all empirically obtained values
o the median of the same value obtained for the control group in the
espective experimental series.

Distributions of movement metrics within the groups in many
ases differed significantly from Gaussian distributions, as indicated by
olmogorov–Smirnov and Shapiro–Wilk tests. Thus, for the assessment
f the statistical significance of our results, we employed the Kruskal–
allis statistical test for multiple comparisons and Mann–Whitney
-test for pairwise comparisons, respectively. However, since the one-

actor analysis of variance (ANOVA), which is generally more powerful
han the above non-parameteric tests, is known for its validity also for
on-Gaussian distributed data with moderate distributional asymmetry,
or a further confirmation, we also employed this test in combination
ith the Tamhane’s T2 criterion for unequal variances for pairwise

omparisons. To confirm statistically significant reduction of variances
n the model based estimations of conventional scalar movement met-
ics compared to their direct estimates based on the video analysis
rocedure, we used Levene’s statistical test. We consider the differences
s statistically significant at the significance level 𝑝 < 0.05.

To combine several potentially complementary metrics into a sin-
5

le decision making rule, we applied the logistic regression model o
pproach. To test whether the prediction accuracy can be improved
sing a combination of metrics, we followed a stepwise procedure as
escribed below. In the first step, for each experimental group we
alculated all considered metrics. In the second step, we eliminated
hose metrics that did not indicate any statistically significant differ-
nces between the considered experimental groups according to the
ann–Whitney U-test. In the third step, possible combinations of the

emaining metrics were included in the logistic regression model in a
tepwise manner. The particular order of the metrics to be included
n the model was determined by their Wald statistics, which are pro-
ortional to their significance levels as single pairwise classifiers. Once
n additional classifier was included, we calculated the probability
hat the studied metrics belongs to one of the considered groups 𝑝 =
∕[1 + 𝑒𝑥𝑝(−𝑧)], where 𝑧 = 𝐵0 + 𝐵1𝑥1 + 𝐵2𝑥2 + ⋯ + 𝐵𝑚𝑥𝑚 is a linear

combination of considered metrics 𝑥𝑖. The quality of the model fitting to
the empirical data is quantified by the coefficient of determination 𝑅2,
which typically increases after the addition of classifiers, and converges
to a plateau, when further addition of classifiers no longer improves
the model fitting accuracy. In the fourth step, the effectiveness of the
resulting model for pairwise classifications is validated by calculating
𝑝 for each group and comparing it against a decision threshold 𝛩 =
1∕2. Whether 𝑝 is smaller or larger than 𝛩, the group is classified
as belonging to the first or second group, respectively. In practical
scenarios, the distributions of both individual metrics and their com-
binations in the logistic regression models for different experimental
groups exhibit inevitable overlaps, leading to classification errors (for a
recent example see, e.g., [46]). To quantify the classification accuracy,
we next calculated the sensitivity or recall, also known as the true
positive rate (TPR)

𝑇𝑃𝑅 = 𝑇𝑃
𝑃

= 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (5)

the specificity, also known as the true negative rate (TNR)

𝑇𝑁𝑅 = 𝑇𝑁
𝑃𝑁

= 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

, (6)

nd the precision, also known as the positive predictive value (PPV)

𝑃𝑉 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (7)

where 𝑇𝑃 is the total number of true positive, 𝑇𝑁 of true negative, 𝐹𝑃
of false positive, and 𝐹𝑁 of false negative predictions, respectively.

3. Results

3.1. Conventional metrics estimation (the blue pipeline)

First, to validate the developed computer vision-based trajectories
extraction procedure, for the animal groups treated with 9j and for the
respective control group, we also estimated seven conventional metrics
using both the Ethovision XT 11.5 software and using the original in-
house developed algorithm. The results are summarized in Figs. 3 and
4, respectively.

3.2. Fluctuation analysis of observational trajectories and model identifica-
tion (the violet pipeline)

Next, we analyze the same trajectories using DFA. Fig. 5 exemplifies
the fluctuation functions for two test groups (a,c,d,f) with maximal
effector doses and two respective control groups (b,e). The figure
indicates that, at least on the average, to a very good approximation,
the fluctuation functions exhibit two asymptotic regimes separated by
a single characteristic crossover. At small scales 𝐹 (𝑠) ∝ 𝑠2 indicating
ronounced persistence in the movement increments, while at large
cales 𝐹 (𝑠) ∝ 𝑠 indicating the emergence of antipersistence in the
ovement increments. Remarkably, these two regimes are reproduced

uite well in all studied groups, especially for the 𝑦-axis projection
f the movement trajectory, while for the 𝑥-axis projection, some
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Fig. 3. Boxplots for seven different scalar metrics obtained by Ethovision XT 11.5 software.
Fig. 4. Boxplots for the same seven metrics obtained by the original computer vision algorithm.
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oderate deviations from this pattern can be observed at large scales
nly. When considering averaged fluctuation functions for each group,
articular positions of the crossover between the two asymptotic scal-
ng regimes likely represent a single free model parameter (for each
rojection of the movement trajectory) that explicitly reflects the al-
eration of the movement patterns under respective pharmacological
timuli. Accordingly, the respective crossover positions could act as
n alternative to the conventional metrics, since they characterize the
ovement trajectory model, and thus the conventional metrics could

e reproduced based on the model with respective parameters. Since
wo independent control groups have been used for the study with
j and Caffeine, the central panels (b,e) indicating results for control
roups shows two green bold curves in each. Similarly, two different
ashed lines are used to illustrate rough asymptotic fits to the respective
roup averages. In other panels, additional curves (marked by different
olors) indicate similar fluctuation functions for the simulated data, for
ypical model parameters. Moderate discrepancies could be observed
etween two control groups, indicating that further analysis and in-
erpretation should rather focus on relative values to the respective
ontrols.

To estimate the crossover position between the characteristic
egimes 𝐹 (𝑠) ∝ 𝑠2 and 𝐹 (𝑠) ∝ 𝑠, we next rotated the fluctuation

functions by dividing 𝐹 (𝑠) over 𝑠3∕2, where the exponent 3∕2 represents
he average between the two asymptotic regimes 𝐻 = 2 and 𝐻 =
1, respectively. Accordingly, assuming that the asymptotic behavior
6

a

holds, the ‘‘rotated’’ fluctuation function 𝐹 (𝑠)∕𝑠3∕2 would exhibit the
ame decay rates on both sides of the crossover, represented by a
smoothed) triangle a double logarithmic scale, and thus the position of
he crossover can be obtained from its global maxima, as exemplified in
ig. 6 for the averaged fluctuation functions within each of the studied
xperimental groups. As shown in Figs. 7 and 8, the crossover positions
eflect the specific response to the pharmacological stimuli indicated by
xplicit discrepancies between experimental groups. Of note, deviations
f some fluctuation functions from the triangular shapes are an artifact
f considerable zooming, in comparison with Fig. 6.

.3. Model based trajectories simulation (the green pipeline)

In order to confirm the reproducibility of the conventional scalar
ovement metrics by the model, we next suggest a simulation algo-

ithm that generates surrogate movement trajectories with the same
tatistical properties like in the empirical ones, based on just two model
arameters 𝑠𝑥 and 𝑠𝑦 estimated for each individual animal movement
rajectory. The algorithm is illustrated in Fig. 9. First, we generate
hite Gaussian noise (WGN) characterized by 𝐻 = 1∕2 at all scales.
econd, we pass WGN through a 1∕𝑓 filter leading to the enhancement
f the Hurst exponent 𝐻 = 1. Third, to obtain the resulting fluctuation
unction with two asymptotic regimes with 𝐻 = 2 at small scales

nd 𝐻 = 1 at large scales, separated by the desired crossover (see
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Fig. 5. Fluctuation functions for two test groups (a,c,d,f) with maximal effector doses and two respective control groups (b,e) for the movement projections on the 𝑥-axis (a–c)
and 𝑦-axis (d–f), respectively, obtained by DFA. Thin dashed curves indicate fluctuation functions for each of the 16 individual trajectories in each group, while bold full curves
represent averages over the thin curves. Black dashdot lines show approximations 𝐹 (𝑠) ∝ 𝑠 and 𝐹 (𝑠) ∝ 𝑠2 as guides for the eye. For comparison, overlaying colored curves represent
similar fluctuation functions obtained for some representative examples of the simulated trajectories characterized by crossover positions 𝑆𝑥 and 𝑆𝑦, respectively, to illustrate
similarities in their shapes and locations. Due to higher variability of fluctuation functions for the 𝑦-axis projections, fluctuation functions for two different model parameters are
shown.

Fig. 6. The procedure of fluctuation function crossover position estimation based on finding the local maxima in 𝐹 (𝑠)∕𝑠3∕2 exemplified for the experimental groups with 9j and
caffeine pharmacological stimuli, respectively.
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Fig. 7. A pairplot for the first four representative scalar metrics and two model parameter estimates, one for the movement along 𝑥-axis and the other along the 𝑦-axis, respectively.
Fig. 8. Boxplots for the crossover positions 𝑠𝑥 and 𝑠𝑦.
c
ig. 9), we apply the moving average filter. To establish a one-by-
ne correspondence between the moving average filter size and the
8

rossover position 𝑠×, we have generated multiple surrogate series with
variable moving average filter size and obtained the crossover positions
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Fig. 9. Model based trajectories simulation algorithm.
Fig. 10. (a) Fluctuation functions 𝐹 (𝑠) for surrogate data series obtained by the simulation algorithm depicted in Fig. 9 with variable moving average filter size; (b) The same
luctuation functions but divided over 𝑠3∕2; (c) Linear regression of the crossover position as determined in (b) on the moving average filter size in the generation model.
onvergence to an upper limit in (c) is the consequence of finite size effect, where particular saturation level and crossover position are dependent on the number of data points

n the trajectory; for compatibility with observational data, the surrogate data series were of the same sizes as the empirical ones.
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ollowing the same procedure as for the empirical trajectories, as illus-
rated in Fig. 10. To confirm the accuracy of the simulation procedure,
e show representative examples for typical model parameters in Fig. 5

eading to fluctuation functions that are closely reminiscent to the
espective empirical group averages.

Finally, using the surrogate trajectories generated with characteris-
ic model parameters 𝑠𝑥 and 𝑠𝑦 for each individual organism, we have
stimated the conventional scalar movement metrics following the pro-
edure identical to the one used previously the empirical trajectories.
he respective boxplots are shown in Fig. 11.

The figure shows explicitly that the model based estimates of the
onventional scalar movement metrics appear more stable, are char-
cterized by smaller variances, and thus demonstrate more specific
haracteristics responses to the respective pharmacological stimuli,
ompared to their direct estimations from visual data. The above re-
ults clearly demonstrate that the model-based approach appears more
obust in the presence of inevitable trajectory disturbances induced
y noise and gaps, and thus represents a preferential approach to the
nalysis of empirical movement patterns. The numerical results are
ummarized in Table 2.

.4. Statistical analysis

In the following, we focus on the comparisons of the conventional
etrics and their indirect model based estimates. First, we consider

he Caffeine test and compare the control group (1), the 50 mg test
roup (2) and the 100 mg test group (3) using both Kruskal–Wallis
nd ANOVA tests. The results summarized in Tables 3 and 4 indicate
hat, while none of the conventional metrics indicated statistically
9

significant differences between the studied groups (except for Kruskal–
Wallis for the first ascent latency, although not confirmed by ANOVA),
due to high variations among estimated values, the model parameters
for both 𝑥-axis and 𝑦-axis movement projections differed significantly
with 𝑝 < 0.05. Moreover, model based estimates for five out of seven
onventional movement metrics, in marked contrast to their direct
valuations from the empirical trajectories, also indicated statistically
ignificant differences between groups, according to both statistical
ests employed. By contrast, the remaining two metrics, the sum stop
ime (the total fading duration) and the first ascent latency, indicated
urther enhancement of 𝑝-values in both Kruskal–Wallis and ANOVA

tests. Speculatively, this could be interpreted as a more clear indication
of the absence of significant discrepancies, contributing to the reduction
of uncertainty (see Tables 5 and 6).

Next, we proceed with similar tests for the 9j experimental se-
ries. Again, both Kruskal–Wallis and ANOVA tests indicate significance
differences between studied groups both in the model parameters 𝑠𝑥
nd 𝑠𝑦, as well as in five (out of seven) conventional scalar metrics
hen using their model based estimates, while their direct estimates

rom movement trajectories, as well as Ethovision based evaluations,
esulted in significant discrepancies in just four metrics according to
ruskal–Wallis and two metrics according to ANOVA, respectively.
lthough for the crosses count metric with ANOVA and for the sum

op time (the total duration in the upper tank zone) the significance
hreshold 𝑝 = 0.05 has not been reached, at least in the latter case
onsiderable improvements of the significance could be observed in
oth tests, indicated by the reduction of from 𝑝 ⪅ 1 to 𝑝 ⪆ 0.05. The
atter could be attributed to the reduction of within-group variances
n many cases, as indicated explicitly by the results of the Levene’s
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Fig. 11. Boxplots for the same seven conventional metrics as in Fig. 4, although this time obtained indirectly using the model based approach. The surrogate trajectories have
been generated according to the procedure illustrated in Fig. 9 with moving average sizes as only free parameters obtained from fitted crossover positions as in Fig. 6 (although
this time individually for each animal, separately for 𝑠𝑥 and 𝑠𝑦) in accordance with the regression model obtained from Fig. 10. Next the surrogate trajectories have been subjected
to the same analysis procedure as the empirical ones.
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statistical test comparing the variances of the conventional and model
based estimates of the same movement metrics in the same groups after
their normalization to the medians of the respective control groups
summarized in Table 7.

It is also interesting to note that direct estimates of conventional
scalar metrics were not consistent with the Ethovision based eval-
uations in terms of particular metrics indicating significant discrep-
ancies between studied groups, that raises questions regarding their
reproducibility. In marked contrast, the crossover positions 𝑠𝑥 and 𝑠𝑦
remained significantly different between groups in all pairwise com-
parisons considered above also in the second iteration, when estimated
from fluctuation functions obtained from surrogate data, indicating
good reproducibility of the model parameters and further confirming
the model self-consistency.

For pairwise comparison scenarios, the classification accuracy could
be further improved by combining multiple criteria using the logistic
regression model approach. In particular, for the experimental group
treated with 100 mg Caffeine vs. respective control group, when consid-
ering only conventional metrics estimated directly from the trajectory
(i.e. without using any kind of model based estimates yet), the com-
bined model included the first accent latency and the total traveled
distance, leading to the Nagelkerke’s 𝑅2 = 0.567, while sensitivity,
specificity and precision estimates reached 𝑇𝑃𝑅 = 0.900, 𝑇𝑁𝑅 = 0.917,
and 𝑃𝑃𝑉 = 0.900, respectively. In contrast, when the crossover position
𝑥 has been included in the combined model, in combination with the
est complementary scalar metric to 𝑠𝑥 that was the maximum speed
bserved during the test, 𝑅2 = 0.667, 𝑇𝑃𝑅 = 1.000, 𝑇𝑁𝑅 = 0.769, and
𝑃𝑉 = 0.800, respectively.

For the experimental group treated with 100 mg 9j vs. control group
he combined model included the total distance traveled by the fish
uring the experiment and the crossover position 𝑠×. Since crossover
ositions 𝑠𝑥 and 𝑠𝑦 are correlated (see Fig. 7, including one of the pa-
ameters (e.g., 𝑠𝑥) already provides with accurate classification, while
urther addition of the remaining parameter (in this case 𝑠𝑦) does not

lead to significant improvement of the classification accuracy. In par-
ticular, when 𝑠𝑦 has been chosen as a complementary parameter to the
total traveled distance in the combined model, the Nagelkerke’s 𝑅2 =
10

0.755, while sensitivity, specificity and precision estimates reached l
𝑇𝑃𝑅 = 0.929, 𝑇𝑁𝑅 = 0.875, and 𝑃𝑃𝑉 = 0.866, respectively. Alterna-
tively, inclusion of 𝑠𝑥 in the combined model instead of 𝑠𝑦 resulted in
𝑅2 = 0.867, 𝑇𝑃𝑅 = 0.923, 𝑇𝑁𝑅 = 0.933, and 𝑃𝑃𝑉 = 0.923, respectively.

he above data indicate that, due to pronounced correlations between
he model parameters 𝑠× characterizing the movements along x- and
-axes, the respective crossover position parameters could generally
ubstitute each other, reducing the total model complexity to a single
ree parameter even for the characterization of the two-dimensional
ovement pattern.

To further evaluate the robustness of the proposed approach to
he presence of gaps in the data, we have repeated the above pair-
ise comparison for manually post-processed trajectories that mainly
imed at the interpolation of large gaps and removal of some artifacts
hat remained in the trajectories despite of the outlier elimination
rocedure during the automated analysis. Our results indicate that
anual post-processing resulted only in a moderate improvement of

he classification accuracy, leading to 𝑅2 = 0.916, 𝑇𝑃𝑅 = 1.000,
𝑁𝑅 = 0.909, and 𝑃𝑃𝑉 = 1.000, respectively.

. Discussion

Statistical analysis and computer simulations of various movement
atterns has a long history in applied mathematics and especially sta-
istical physics. The most basic concept that dates nearly two centuries
ack is the simple Brownian motion, that also represents the limiting
ase for the random walk model. Under the assumption of statistically
ndependent and identically distributed increments at each step, the
oot-mean square displacement of the random walker from the origin
fter 𝑠 steps, according to the classic Fick’s diffusion law, scales as
(𝑠) ∝ 𝑠1∕2. Possible generalizations of this concept for correlated

ncrements include the fBm model with 𝐹 (𝑠) ∝ 𝑠𝐻 , a widely used
pproach for modeling data series with long-term persistence, including
nimal movement patterns in their natural environments. The above
aws hold asymptotically, making these models completely scale-free,
haracterized by theoretically unlimited long-term correlations.

In contrast, experimental animal movement patterns, including the
pen field test and the novel tank test, premise that the motions are

imited to a certain confined space, making asymptotically scale-free
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Table 2
The summary of the first four representative conventional movement metrics and model
parameters in all studied groups. Each group contained 16 animals. The fraction of
gaps in the coordinate data obtained from the developed computer vision algorithms
are denoted for each studied group.

Feature Group Dose Empirical Model

gaps, % Median IQR Median IQR

Total
distance

0 6.78 229.85 543.44 577.76 341.94
9j 1 mg 1.82 164.64 317.54 467.66 449.93

100 mg 6.33 111.10 82.81 206.22 240.64

0 4.67 115.31 55.80 272.48 82.56
Caffeine 50 mg 14.62 122.76 69.79 334.48 81.81

100 mg 4.36 151.86 122.09 449.63 98.18

Average
speed

0 6.78 0.62 1.46 1.55 0.92
9j 1 mg 1.82 0.44 0.85 1.25 1.21

100 mg 6.33 0.3 0.22 0.55 0.64

0 4.67 0.31 0.15 0.73 0.22
Caffeine 50 mg 14.62 0.33 0.17 0.9 0.22

100 mg 4.36 0.41 0.32 8.4 0.26

Stop
duration

0 6.78 61.6 96.1 52.2 146.5
9j 1 mg 1.82 93.6 49.6 121.5 219.25

100 mg 6.33 221.2 157.65 360.6 198.1

0 4.67 81.6 60.8 98.5 93.3
Caffeine 50 mg 14.62 106.6 174.55 41.3 44.65

100 mg 4.36 47.6 125.25 8.4 26.1

Crosses
count

0 6.78 43 121 166 180
9j 1 mg 1.82 21 69.5 135 61

100 mg 6.33 4 14.5 59 49.75

0 4.67 9 7 76 57.75
Caffeine 50 mg 14.62 6.5 11 95 51.25

100 mg 4.36 7 13.5 121 82

Crossover X

0 6.78 35 48 9.5 2.75
9j 1 mg 1.82 41 37.5 8 0.75

100 mg 6.33 113 79.5 18.5 12.5

0 4.67 73 26 9 6.75
Caffeine 50 mg 14.62 69 45 13 7

100 mg 4.36 43.5 18.75 7 2

Crossover Y

0 6.78 60 63 37 3.25
9j 1 mg 1.82 95.5 37.5 16 10

100 mg 6.33 204.5 229.25 33 49

0 4.67 180.5 161.75 37 23.5
Caffeine 50 mg 14.62 125 88 18 18

100 mg 4.36 89 84.5 13 9

Table 3
𝑝-values for the Kruskal–Wallis test results for the Caffeine test, control group (1) vs.
50 mg group (2) vs. 100 mg group (3).

Direct estimation Model-based estimation

Total distance 0.099 <0.001
Average speed 0.099 <0.001
Stop duration 0.093 <0.001
Crosses count 0.411 0.044
Max speed 0.733 <0.001
Sum top time 0.500 0.930
First ascent latency 0.037 0.710

Crossover X <0.001 0.024
Crossover Y 0.025 0.015

models hardly adequate, due to a breakdown of persistence above a
certain scale. Moreover, the alternating movement patterns that are
inevitable in confined space due to imminent reversals also assume the
emergence of antipersistence at large scales. Accordingly, the resulting
animal movement model is no longer expected to exhibit scale-free
properties, but rather consist of at least two characteristic regimes,
corresponding to a persistent random walk at small scales, that is
substituted by an antipersistent pattern at large scales.

Our results indicate that these two asymptotic regimes 𝐹 (𝑠) ∝
2 (which corresponds to persistent increments) at small scales and
11

(𝑠) ∝ 𝑠 (which corresponds to antipersistent increments) at large p
Table 4
𝑝-values for the ANOVA test results for the Caffeine test, control group (1) vs. 50 mg
group (2) vs. 100 mg group (3).

Direct estimation Model-based estimation

Total distance 0.080 0.002
Average speed 0.080 0.002
Stop duration 0.149 0.001
Crosses count 0.340 0.047
Max speed 0.802 0.001
Sum top time 0.940 0.882
First ascent latency 0.100 0.288

Crossover X 0.032 0.020
Crossover Y 0.017 0.002

Table 5
𝑝-values for the Kruskal–Wallis test results for 9j control (group 4), 9j 1 mg (group 5)
and 9j 100 mg (group 6).

Ethovision results Direct estimation Model estimation

Total distance <0.001 0.006 0.006
Average speed <0.001 0.006 0.006
Stop duration 0.010 <0.001 0.006
Crosses count 0.793 0.002 0.006
Max speed <0.001 0.980 0.005
Sum top time 0.923 0.541 0.058
First ascent latency 0.163 0.899 0.253

Crossover X N/A 0.006 0.001
Crossover Y N/A 0.001 0.003

Table 6
𝑝-values for the ANOVA test results for 9j control (group 4), 9j 1 mg (group 5) and 9j
100 mg (group 6).

Ethovision results Direct estimation Model estimation

Total distance <0.001 0.316 0.014
Average speed <0.001 0.316 0.014
Stop duration 0.004 <0.001 0.002
Crosses count 0.563 0.050 0.055
Max speed 0.231 0.996 0.017
Sum top time 0.871 0.749 0.019
First ascent latency 0.291 0.341 0.283

Crossover X N/A 0.004 <0.001
Crossover Y N/A <0.001 <0.001

Table 7
𝑝-values for the Levene’s statistical test comparing the variances of the conventional
and model based estimates of the same movement metrics in the same groups after
their normalization to the medians of the respective control groups.

Caffeine 9j

Control 50 mg 100 mg Control 1 mg 100 mg

Total distance 0.316 0.017 0.004 0.013 0.203 0.231
Average speed 0.317 0.017 0.004 0.013 0.204 0.231
Stop duration 0.166 <0.001 <0.001 0.451 <0.001 0.039
Crosses count 0.344 0.3 0.536 0.007 0.001 0.040
Max speed 0.001 0.009 0.001 0.001 0.003 0.244
Sum top time 0.01 0.007 0.637 0.421 0.463 0.024
First ascent latency 0.482 0.967 0.137 0.001 0.008 <0.001

scales are separated by a single crossover at 𝑠×, which is a single
characteristic scale parameter, that also appears a single free parameter
in the proposed animal movement model. As we have shown above,
the particular crossover position 𝑠× explicitly reflects the characteristics
f the animal movement pattern, while being sufficient to simulate
he movement trajectories that reproduce the conventional animal
ovement metrics widely used to evaluate animal model test results.

Of note, since we have applied the DFA method with an inherent
ntegration procedure to the trajectories, but not to the increments,
he analysis procedure altogether is equivalent to the application of
he DFA with double integration to the increments, that has been
reviously applied to characterize antipersistent data series, including
hysiological applications [47]. Instead, one could either apply DFA
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to the increments, or apply DFA to the trajectories, but skip the initial
integration step, this way estimating Hurst exponents of the increments,
𝐻 ≈ 1 at small and 𝐻 ≈ 0 at large scales, respectively. Although
the above approach is fully legitimate and even more theoretically
straightforward, to our opinion, in has two inherent drawbacks. First
of all, since Hurst exponent is bounded by zero from below, asymp-
totic exponents close to zero cannot be distinguished from simple
convergence to this bound, due to methodological limitations. Second,
since coordinates are measured directly from video analysis, while
increments are estimated, commonly by taking first differences, the
relative noise levels in the increments are generally higher, leading to
reduced robustness of the analysis algorithms.

Model-based estimates of movement parameters lead to a better
classification effectiveness mainly because they are characterized by
smaller variances. However, there is inevitable natural variance 𝜎2𝑁
in each experimental group, and thus it is important that this natural
variability is retained despite of the chosen measurement and analysis
procedure. To substantiate the above statement, let us assume that,
at least in the first approximation, the natural variance 𝜎2𝑁 and the
measurement variance 𝜎2𝑀 are statistically independent. Then, by defi-
ition, the total variance for each measurement procedure is given by
2
𝑇 = 𝜎2𝑀 + 𝜎2𝑁 , where 𝜎2𝑁 remains independent of the measurement
rocedure, and thus the minimum total variance 𝜎2𝑇 corresponds to the
ethodology leading to the minimal measurement variance 𝜎2𝑀 [48]. In

ur case, the model-based estimates of the same movement parameters
re characterized by considerably smaller total 𝜎2𝑇 and measurement
2
𝑀 variances, thus leading to a more specific characterization of the
esponse to pharmacological stimuli.

As an outlook, we believe that similar approach could be applied
o the analysis of other animal tests, such as the open field rodent
est, as well as the analysis of animal movement patterns in their
atural habitats, for example in ecological applications. In addition,
urther interpretation of the relationship between the movement model
arameters and some of the conventional scalar movement metrics
rom the statistical physics perspective could be based on the statistics
f level-crossing events generated by long-term correlated data series.
everal metrics can be characterized using event based statistics, such
s crossing events between the bottom and the top zones of the tank,
ading episodes as stop and start events, and so on. From a theoretical
erspective, emergence of long-range correlations in the data series
ead to a considerable alteration of the distributions of return intervals
etween events determined by level crossings by the raw data series.
hile in the absence of correlations return interval distribution exhibits
simple exponential decay, in stationary data series with linear long-

erm correlations the respective distribution extends to the Weibull
unctional form that asymptotically follows a stretched exponential
ith the stretching parameter equals the correlation exponent 𝛾, and

thus also being in one-by-one correspondence with the Hurst exponent
𝐻 , while in the presence of pronounced nonlinear correlations it con-
verges to a power law decaying function [49–51]. For non-stationary
data series, further generalization of the respective analytical treat-
ments could be based on the superstatistical approach that is derived
based on the law of total probability [52,53], like it has been done
recently for various complex systems including various environmental
indicators, as well as DNA structures, teletraffic intensity fluctuations
and many others (for a few representative examples, we refer to [54–
59] and references therein). We believe that similar approach could be
also applied to generalized in higher-dimensional movement models,
by using similar methods generalized to higher dimensions such as
two-dimensional DFA [60] or even three-dimensional equivalents, in
the relevant experimental setup, as well as to the analysis of animal
movement patterns aiming at their more detailed analytical description,
12

although this appears beyond the scope of our current study. S
5. Conclusion

To summarize, in this work we analyzed movement patterns of
zebrafish D. rerio in a novel tank test with an allylmorpholine derivative
9j exhibiting a dose-dependent sedative effect and, in contrast, caf-
feine exhibiting stimulative effect using detrended fluctuation analysis
(DFA). Based on the results of this analysis, we have proposed a novel
animal movement model based on the generalization of the fractional
Brownian motion. The proposed model is capable of reproducing com-
plex animal movement patterns this way overcoming typical limitations
of the conventional analysis commonly reduced to a few scalar metrics
that are often limited in their accuracy and reproducibility.

Our results indicate that characteristic animal movement patterns
exhibit two asymptotic regimes, with persistent increments at small
scales and antipersistent increments at large scales separated by a single
crossover. The position of the crossover represents a single free param-
eter in the proposed animal movement model that explicitly reflects
stimulative and sedative effects on the animal movement patterns lead-
ing to a better distinction between experimental groups. We also show
that the model parameters, as well as the model based estimates of
interpretable movement metrics commonly used in behavioral analysis
appear more robust against measurement artifacts leading to a more
explicit characterization of the movement patterns alteration in various
experimental groups.

The proposed approach could further facilitate automated and ob-
jective characterization of animal model test results involving move-
ment pattern analysis based on computer vision technologies. We also
believe that the proposed approach, due to its universality, robustness
and clear physical interpretation, could be a perspective tool for the
analysis of behavioral complexity in various applications ranging from
experimental drug screening to animal monitoring in their natural
habitats.

CRediT authorship contribution statement

Mikhail I. Bogachev: Conceptualization, Methodology, Investiga-
ion, Writing – original draft, Writing – review & editing, Funding
cquisition. Asya I. Lyanova: Software, Investigation, Data curation,
riting – original draft, Writing – review & editing. Aleksandr M.
initca: Software, Investigation, Data curation, Writing – original draft,
riting – review & editing. Svetlana A. Pyko: Methodology, Valida-

tion. Nikita S. Pyko: Investigation. Alexander V. Kuzmenko: Soft-
are. Sergey A. Romanov: Software. Olga I. Brikova: Investigation.
argarita Tsygankova: Investigation. Dmitry Y. Ivkin: Resources.
ergey V. Okovityi: Resources. Veronika A. Prikhodko: Investiga-
ion. Dmitrii I. Kaplun: Project administration, Supervision, Writ-
ng – original draft. Yuri I. Sysoev: Conceptualization, Investigation,
ethodology, Writing – original draft. Airat R. Kayumov: Methodol-

gy, Validation, Writing – original draft, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

All data are provided as Supplementary material.

cknowledgments

This research was supported by the Ministry of Science and Higher
ducation under assignment FSEE-2020-0002. The experimental results
ere obtained using the equipment of the Center for Collective Use

‘Analytical Center of Saint Petersburg State Chemical and Pharma-
eutical University’’ under the agreement No. 075-15-2021-685 dated
uly 26, 2021 with the financial support by the Ministry of Science and
igher Education. Y.I.S. would also like to acknowledge St. Petersburg

tate University for financial support (project ID: 93022798).



Biomedical Signal Processing and Control 81 (2023) 104409M.I. Bogachev et al.

d
Appendix A. Supplementary data: program source codes and tracke
animal movement data.

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.bspc.2022.104409.

References

[1] E.A. Codling, M.J. Plank, S. Benhamou, Random walk models in biology, J. R.
Soc. Interface 5 (25) (2008) 813–834.

[2] M.B. Hooten, D.S. Johnson, B.T. McClintock, J.M. Morales, Animal Movement:
Statistical Models for Telemetry Data, CRC Press, 2017.

[3] A.M. Reynolds, Scale-free animal movement patterns: Lévy walks outperform
fractional brownian motions and fractional Lévy motions in random search
scenarios, J. Phys. A 42 (43) (2009) 434006.

[4] D. Bearup, C.M. Benefer, S.V. Petrovskii, R.P. Blackshaw, Revisiting brownian
motion as a description of animal movement: a comparison to experimental
movement data, Methods Ecol. Evol. 7 (12) (2016) 1525–1537.

[5] M.B. Hooten, D.S. Johnson, Basis function models for animal movement, J. Amer.
Statist. Assoc. 112 (518) (2017) 578–589.

[6] C.J. Torney, J.M. Morales, D. Husmeier, A hierarchical machine learning frame-
work for the analysis of large scale animal movement data, Mov. Ecol. 9 (1)
(2021) 1–11.

[7] Y. Agid, G. Buzsáki, D.M. Diamond, R. Frackowiak, J. Giedd, J.-A. Girault, A.
Grace, J.J. Lambert, H. Manji, H. Mayberg, et al., How can drug discovery for
psychiatric disorders be improved? Nat. Rev. Drug Discov. 6 (3) (2007) 189–201.

[8] S.C. Stanford, The open field test: reinventing the wheel, J. Psychopharmacol.
21 (2) (2007) 134–136.

[9] T.D. Gould, D.T. Dao, C.E. Kovacsics, The open field test, in: Mood and Anxiety
Related Phenotypes in Mice, 2009, pp. 1–20.

[10] D. Perals, A.S. Griffin, I. Bartomeus, D. Sol, Revisiting the open-field test: what
does it really tell us about animal personality? Anim. Behav. 123 (2017) 69–79.

[11] O. Sturman, P.-L. Germain, J. Bohacek, Exploratory rearing: a context-and
stress-sensitive behavior recorded in the open-field test, Stress 21 (5) (2018)
443–452.

[12] A.-K. Kraeuter, P.C. Guest, Z. Sarnyai, The open field test for measuring
locomotor activity and anxiety-like behavior, in: Pre-Clinical Models, Springer,
2019, pp. 99–103.

[13] A.M. Stewart, O. Braubach, J. Spitsbergen, R. Gerlai, A.V. Kalueff, Zebrafish
models for translational neuroscience research: from tank to bedside, Trends
Neurosci. 37 (5) (2014) 264–278.

[14] C.A. MacRae, R.T. Peterson, Zebrafish as tools for drug discovery, Nat. Rev. Drug
Discov. 14 (10) (2015) 721–731.

[15] A.V. Kalueff, M. Gebhardt, A.M. Stewart, J.M. Cachat, M. Brimmer, J.S. Chawla,
C. Craddock, E.J. Kyzar, A. Roth, S. Landsman, et al., Towards a comprehensive
catalog of zebrafish behavior 1.0 and beyond, Zebrafish 10 (1) (2013) 70–86.

[16] R.J. Egan, C.L. Bergner, P.C. Hart, J.M. Cachat, P.R. Canavello, M.F. Elegante,
S.I. Elkhayat, B.K. Bartels, A.K. Tien, D.H. Tien, et al., Understanding behavioral
and physiological phenotypes of stress and anxiety in zebrafish, Behav. Brain
Res. 205 (1) (2009) 38–44.

[17] C. Maximino, T.M. De Brito, C.A.G. de Mattos Dias, A. Gouveia, S. Morato,
Scototaxis as anxiety-like behavior in fish, Nat. Protoc. 5 (2) (2010) 209–216.

[18] A. Stewart, N. Wu, J. Cachat, P. Hart, S. Gaikwad, K. Wong, E. Utterback, T.
Gilder, E. Kyzar, A. Newman, et al., Pharmacological modulation of anxiety-like
phenotypes in adult zebrafish behavioral models, Prog. Neuro-Psychopharmacol.
Biol. Psychiatry 35 (6) (2011) 1421–1431.

[19] R.E. Blaser, D.B. Rosemberg, Measures of anxiety in zebrafish (danio rerio):
dissociation of black/white preference and novel tank test, PLoS One 7 (5) (2012)
e36931.

[20] A.M. Stewart, J.F. Ullmann, W.H. Norton, M. Parker, C. Brennan, R. Gerlai, A.V.
Kalueff, Molecular psychiatry of zebrafish, Mol. Psychiatry 20 (1) (2015) 2–17.

[21] B.D. Fontana, N.J. Mezzomo, A.V. Kalueff, D.B. Rosemberg, The developing
utility of zebrafish models of neurological and neuropsychiatric disorders: A
critical review, Exp. Neurol. 299 (2018) 157–171.

[22] S. Haghani, M. Karia, R.-K. Cheng, A.S. Mathuru, An automated assay system to
study novel tank induced anxiety, Front. Behav. Neurosci. (2019) 180.

[23] D.G. Valcarce, J.M. Martínez-Vázquez, M.F. Riesco, V. Robles, Probiotics reduce
anxiety-related behavior in zebrafish, Heliyon 6 (5) (2020) e03973.

[24] A. Golla, H. Østby, F. Kermen, Chronic unpredictable stress induces anxiety-like
behaviors in young zebrafish, Sci. Rep. 10 (1) (2020) 1–10.

[25] S. Kato, T. Nakagawa, M. Ohkawa, K. Muramoto, O. Oyama, A. Watanabe, H.
Nakashima, T. Nemoto, K. Sugitani, A computer image processing system for
quantification of zebrafish behavior, J. Neurosci. Methods 134 (1) (2004) 1–7.

[26] A.S. Kane, J.D. Salierno, G.T. Gipson, T.C. Molteno, C. Hunter, A video-based
movement analysis system to quantify behavioral stress responses of fish, Water
Res. 38 (18) (2004) 3993–4001.

[27] J. Cachat, A. Stewart, E. Utterback, P. Hart, S. Gaikwad, K. Wong, E. Kyzar,
N. Wu, A.V. Kalueff, Three-dimensional neurophenotyping of adult zebrafish
behavior, PLoS One 6 (3) (2011) e17597.
13
[28] L. Grossman, E. Utterback, A. Stewart, S. Gaikwad, K.M. Chung, C. Suciu, K.
Wong, M. Elegante, S. Elkhayat, J. Tan, et al., Characterization of behavioral and
endocrine effects of lsd on zebrafish, Behav. Brain Res. 214 (2) (2010) 277–284.

[29] A. Stewart, R. Riehl, K. Wong, J. Green, J. Cosgrove, K. Vollmer, E. Kyzar, P.
Hart, A. Allain, J. Cachat, et al., Behavioral effects of mdma (ecstasy) on adult
zebrafish, Behav. Pharmacol. 22 (3) (2011) 275.

[30] T.O. Kolesnikova, S.L. Khatsko, O.S. Eltsov, V.A. Shevyrin, A.V. Kalueff, When
fish take a bath: Psychopharmacological characterization of the effects of a
synthetic cathinone bath salt ‘flakka’on adult zebrafish, Neurotoxicol. Teratol.
73 (2019) 15–21.

[31] M.E. Wolter, K.R. Svoboda, Doing the locomotion: Insights and potential pitfalls
associated with using locomotor activity as a readout of the circadian rhythm
in larval zebrafish, J. Neurosci. Methods 330 (2020) 108465.

[32] G. Liebsch, A. Montkowski, F. Holsboer, R. Landgraf, Behavioural profiles of two
wistar rat lines selectively bred for high or low anxiety-related behaviour, Behav.
Brain Res. 94 (2) (1998) 301–310.

[33] N. Sestakova, A. Puzserova, M. Kluknavsky, I. Bernatova, Determination of motor
activity and anxiety-related behaviour in rodents: methodological aspects and
role of nitric oxide, Interdiscip. Toxicol. 6 (3) (2013) 126–135.

[34] P. Mathur, S. Guo, Differences of acute versus chronic ethanol exposure on
anxiety-like behavioral responses in zebrafish, Behav. Brain Res. 219 (2) (2011)
234–239.

[35] A. Mustafa, E. Roman, S. Winberg, Boldness in male and female zebrafish (danio
rerio) is dependent on strain and test, Front. Behav. Neurosci. (2019) 248.

[36] Y.I. Sysoev, D.A. Meshalkina, D.V. Petrov, S.V. Okovityi, P.E. Musienko, A.V.
Kalueff, Pharmacological screening of a new alpha-2 adrenergic receptor agonist,
mafedine, in zebrafish, Neurosci. Lett. 701 (2019) 234–239.

[37] R. Jeanson, S. Blanco, R. Fournier, J.-L. Deneubourg, V. Fourcassié, G. Theraulaz,
A model of animal movements in a bounded space, J. Theoret. Biol. 225 (4)
(2003) 443–451.

[38] T.A. Patterson, L. Thomas, C. Wilcox, O. Ovaskainen, J. Matthiopoulos, State–
space models of individual animal movement, Trends Ecol. Evol. 23 (2) (2008)
87–94.

[39] P.E. Smouse, S. Focardi, P.R. Moorcroft, J.G. Kie, J.D. Forester, J.M. Morales,
Stochastic modelling of animal movement, Philos. Trans. R. Soc. B 365 (1550)
(2010) 2201–2211.

[40] R. Langrock, J.G.C. Hopcraft, P.G. Blackwell, V. Goodall, R. King, M. Niu, T.A.
Patterson, M.W. Pedersen, A. Skarin, R.S. Schick, Modelling group dynamic
animal movement, Methods Ecol. Evol. 5 (2) (2014) 190–199.

[41] N.M. Chernov, R.V. Shutov, O.I. Barygin, M.Y. Dron, G.L. Starova, N.N. Kuz’mich,
I.P. Yakovlev, Synthesis of chromone-containing allylmorpholines through a
Morita–Baylis–Hillman-type reaction, Eur. J. Organ. Chem. 2018 (45) (2018)
6304–6313.

[42] V. Prikhodko, Y. Sysoev, Sedative activity of a new allylmorpholine derivative
in the novel tank diving test in zebrafish danio rerio, J. Biomed. 17 (3E) (2021)
161–164.

[43] A.O. Alia, M.L. Petrunich-Rutherford, Anxiety-like behavior and whole-body
cortisol responses to components of energy drinks in zebrafish (danio rerio),
PeerJ 7 (2019) e7546.

[44] C.-K. Peng, S. Buldyrev, S. Havlin, M. Simons, H. Stanley, A. Goldberger, Mosaic
organization of dna nucleotides, Phys. Rev. E 49 (2) (1994) 1685.

[45] J. Kantelhardt, E. Koscielny-Bunde, H. Rego, S. Havlin, A. Bunde, Detecting long-
range correlations with detrended fluctuation analysis, Phys. A 295 (3) (2001)
441–454.

[46] M.I. Bogachev, A.R. Kayumov, O.A. Markelov, A. Bunde, Statistical prediction
of protein structural, localization and functional properties by the analysis of
its fragment mass distributions after proteolytic cleavage, Sci. Rep. 6 (1) (2016)
1–19.

[47] J. Kantelhardt, Y. Ashkenazy, P.C. Ivanov, A. Bunde, S. Havlin, T. Penzel, J.-
H. Peter, H.E. Stanley, Characterization of sleep stages by correlations in the
magnitude and sign of heartbeat increments, Phys. Rev. E 65 (5) (2002) 051908.

[48] A. Sokolova, Y. Uljanitski, A.R. Kayumov, M.I. Bogachev, Improved online event
detection and differentiation by a simple gradient-based nonlinear transforma-
tion: Implications for the biomedical signal and image analysis, Biomed. Signal
Process. Control 66 (2021) 102470.

[49] M.I. Bogachev, J.F. Eichner, A. Bunde, Effect of nonlinear correlations on the
statistics of return intervals in multifractal data sets, Phys. Rev. Lett. 99 (24)
(2007) 240601.

[50] M.I. Bogachev, J.F. Eichner, A. Bunde, On the occurence of extreme events in
long-term correlated and multifractal data sets, Pure Appl. Geophys. 165 (6)
(2008) 1195–1207.

[51] M.I. Bogachev, I.S. Kireenkov, E.M. Nifontov, A. Bunde, Statistics of return in-
tervals between long heartbeat intervals and their usability for online prediction
of disorders, New J. Phys. 11 (6) (2009) 063036.

[52] C. Beck, E.G. Cohen, Superstatistics, Phys. A 322 (2003) 267–275.
[53] C. Beck, E.G. Cohen, H.L. Swinney, From time series to superstatistics, Phys.

Rev. E 72 (5) (2005) 056133.
[54] A. Bunde, M.I. Bogachev, S. Lennartz, Precipitation and river flow: Long-term

memory and predictability of extreme events, Extreme Events Nat. Hazards:
Complex. Pers. 196 (2012) 139–152.

https://doi.org/10.1016/j.bspc.2022.104409
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb1
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb1
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb1
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb2
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb2
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb2
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb3
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb3
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb3
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb3
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb3
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb4
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb4
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb4
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb4
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb4
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb5
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb5
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb5
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb6
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb6
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb6
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb6
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb6
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb7
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb7
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb7
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb7
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb7
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb8
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb8
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb8
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb9
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb9
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb9
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb10
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb10
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb10
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb11
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb11
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb11
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb11
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb11
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb12
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb12
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb12
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb12
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb12
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb13
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb13
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb13
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb13
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb13
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb14
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb14
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb14
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb15
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb15
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb15
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb15
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb15
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb16
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb16
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb16
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb16
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb16
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb16
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb16
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb17
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb17
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb17
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb18
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb18
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb18
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb18
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb18
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb18
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb18
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb19
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb19
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb19
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb19
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb19
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb20
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb20
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb20
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb21
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb21
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb21
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb21
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb21
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb22
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb22
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb22
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb23
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb23
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb23
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb24
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb24
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb24
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb25
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb25
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb25
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb25
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb25
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb26
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb26
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb26
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb26
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb26
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb27
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb27
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb27
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb27
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb27
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb28
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb28
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb28
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb28
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb28
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb29
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb29
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb29
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb29
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb29
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb30
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb30
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb30
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb30
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb30
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb30
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb30
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb31
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb31
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb31
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb31
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb31
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb32
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb32
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb32
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb32
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb32
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb33
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb33
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb33
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb33
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb33
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb34
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb34
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb34
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb34
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb34
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb35
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb35
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb35
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb36
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb36
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb36
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb36
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb36
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb37
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb37
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb37
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb37
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb37
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb38
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb38
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb38
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb38
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb38
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb39
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb39
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb39
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb39
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb39
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb40
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb40
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb40
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb40
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb40
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb41
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb41
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb41
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb41
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb41
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb41
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb41
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb42
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb42
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb42
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb42
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb42
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb43
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb43
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb43
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb43
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb43
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb44
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb44
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb44
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb45
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb45
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb45
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb45
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb45
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb46
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb46
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb46
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb46
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb46
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb46
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb46
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb47
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb47
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb47
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb47
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb47
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb48
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb48
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb48
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb48
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb48
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb48
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb48
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb49
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb49
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb49
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb49
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb49
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb50
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb50
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb50
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb50
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb50
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb51
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb51
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb51
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb51
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb51
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb52
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb53
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb53
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb53
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb54
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb54
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb54
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb54
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb54


Biomedical Signal Processing and Control 81 (2023) 104409M.I. Bogachev et al.
[55] A. Tamazian, V. Nguyen, O. Markelov, M. Bogachev, Universal model for
collective access patterns in the internet traffic dynamics: A superstatistical
approach, Europhys. Lett. 115 (1) (2016) 10008.

[56] O. Markelov, V.N. Duc, M. Bogachev, Statistical modeling of the internet traffic
dynamics: To which extent do we need long-term correlations? Phys. A 485
(2017) 48–60.

[57] M.I. Bogachev, O.A. Markelov, A.R. Kayumov, A. Bunde, Superstatistical model
of bacterial dna architecture, Sci. Rep. 7 (1) (2017) 1–12.
14
[58] B. Schäfer, C.M. Heppell, H. Rhys, C. Beck, Fluctuations of water quality time
series in rivers follow superstatistics, Iscience 24 (8) (2021) 102881.

[59] Y. Itto, C. Beck, Superstatistical modelling of protein diffusion dynamics in
bacteria, J. R. Soc. Interface 18 (176) (2020) 0927.

[60] G.-F. Gu, W.-X. Zhou, Detrended fluctuation analysis for fractals and multifractals
in higher dimensions, Phys. Rev. E 74 (6) (2006) 061104.

http://refhub.elsevier.com/S1746-8094(22)00863-1/sb55
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb55
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb55
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb55
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb55
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb56
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb56
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb56
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb56
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb56
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb57
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb57
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb57
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb58
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb58
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb58
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb59
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb59
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb59
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb60
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb60
http://refhub.elsevier.com/S1746-8094(22)00863-1/sb60

	Understanding the complex interplay of persistent and antipersistent regimes in animal movement trajectories as a prominent characteristic of their behavioral pattern profiles: Towards an automated and robust model based quantification of anxiety test data
	Introduction
	Methods
	Experimental protocol
	The overall study design
	Extraction of movement trajectories by computer vision method (module A)
	Conventional metrics estimation (module  C)
	Estimation of model parameters (module D)
	Model-based trajectory generation (module B)
	Statistical analysis (module E)

	Results
	Conventional metrics estimation (the blue pipeline)
	Fluctuation analysis of observational trajectories and model identification (the violet pipeline)
	Model based trajectories simulation (the green pipeline)
	Statistical analysis

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data: Program source codes and tracked animal movement data.
	References


